Increased Expression of E-cadherin, Endothelin-1, and CD68 in Preeclamptic Placentas

Sevgi İrtegün¹, Mehmet Ali Tekin¹, Rojbin Alpaycı²

Objective: Preeclampsia (PE) is a complex pregnancy-specific disorder characterized by the onset of hypertension and proteinuria after the 20th week of gestation (1, 2). In addition to hypertension and proteinuria, PE also affects the central nervous system, lungs, liver, heart, and kidneys. PE occurs in about 5–7% of all pregnancies worldwide and is the primary cause of maternal and neonatal morbidity and mortality (3). Although the pathophysiological mechanisms of PE are unclear, increasing evidence has shown that abnormal placentation and endothelial dysfunction play a key role in the pathological changes in PE (4-6).

The placenta is the maternal–fetal interface, which provides the efficient blood supply required for the exchange of nutrients, waste, and gas between the maternal and fetal circulations. Trophoblasts, which form the outer layer of the placenta, are divided into two layers: an underlying layer known as cytotrophoblasts and an overlying layer known as syncytiotrophoblasts (7-9). PE is associated with the impaired migration/invasiveness of trophoblasts, which leads to endothelial dysfunction, incomplete uterine vascular remodeling, and, consequently, poor placental perfusion. In a normal pregnancy, the invasion of cytotrophoblasts results in remodeling of the uterine spiral arteries, which is required for placental perfusion. In PE, remodeling of the spiral arteries is impaired as a result of poor trophoblast migration/invasion (10, 11).

E-cadherin is an adherent junction protein expressed by epithelial tissues, which is important for the development of the embryo and the formation of cell–cell interactions via intracellular binding to catenins such as β-catenin, plakoglobin, and p120 catenin (12). Endothelin-1 is a vascular regulator that is produced by endothelial cells and cardiomyocytes, which has vasoconstrictive and mitotic effects via the stimulation of growth factors. It is also important in hypertension, acting as a blood pressure elevator (13, 14). CD68, which belongs to the LAMP (lysosomal-associated membrane protein) family of glycoproteins, is expressed by monocytes and macrophages. Its main function is unknown, but, because of its location close to the endosomal or lysosomal membrane, an antigen process is presumed to be involved in preventing the hydrolysis of lysozyme (15).

INTRODUCTION

Preeclampsia (PE) is a complex pregnancy-specific multisystem disorder, which is characterized by the onset of hypertension and proteinuria after the 20th week of gestation (1, 2). In addition to hypertension and proteinuria, PE also affects the central nervous system, lungs, liver, heart, and kidneys. PE occurs in about 5–7% of all pregnancies worldwide and is the primary cause of maternal and neonatal morbidity and mortality (3). Although the pathophysiological mechanisms of PE are unclear, increasing evidence has shown that abnormal placentation and endothelial dysfunction play a key role in the pathological changes in PE (4-6).

The placenta is the maternal–fetal interface, which provides the efficient blood supply required for the exchange of nutrients, waste, and gas between the maternal and fetal circulations. Trophoblasts, which form the outer layer of the placenta, are divided into two layers: an underlying layer known as cytotrophoblasts and an overlying layer known as syncytiotrophoblasts (7-9). PE is associated with the impaired migration/invasiveness of trophoblasts, which leads to endothelial dysfunction, incomplete uterine vascular remodeling, and, consequently, poor placental perfusion. In a normal pregnancy, the invasion of cytotrophoblasts results in remodeling of the uterine spiral arteries, which is required for placental perfusion. In PE, remodeling of the spiral arteries is impaired as a result of poor trophoblast migration/invasion (10, 11).

E-cadherin is an adherent junction protein expressed by epithelial tissues, which is important for the development of the embryo and the formation of cell–cell interactions via intracellular binding to catenins such as β-catenin, plakoglobin, and p120 catenin (12). Endothelin-1 is a vascular regulator that is produced by endothelial cells and cardiomyocytes, which has vasoconstrictive and mitotic effects via the stimulation of growth factors. It is also important in hypertension, acting as a blood pressure elevator (13, 14). CD68, which belongs to the LAMP (lysosomal-associated membrane protein) family of glycoproteins, is expressed by monocytes and macrophages. Its main function is unknown, but, because of its location close to the endosomal or lysosomal membrane, an antigen process is presumed to be involved in preventing the hydrolysis of lysozyme (15).
The investigation of a specific protein in the preeclamptic placenta can provide important information for the better understanding of potential mechanisms that cause PE. Studies of the associations of E-cadherin, endothelin-1, and CD68 in PE have been limited. Therefore, in this study we aimed to investigate the expression of E-cadherin, endothelin-1, and CD68 in the preeclamptic placenta.

MATERIALS and METHODS

Study subjects
This study was approved by the local ethics committee. Informed consent was obtained from the patients and healthy subjects. Ten preeclamptic placentas from women diagnosed with PE and 10 normal placentas from healthy pregnant women were included in the study. Pregnant women with PE were selected based on the basis of an increased systolic blood pressure (>140 mmHg) and an increased diastolic blood pressure (>90 mmHg) with proteinuria (300 mg/24 h) on urine analysis. Preeclamptic pregnant women with infection, chronic hypertension, and any other chronic diseases were excluded from the study. Healthy pregnant women used as controls were selected based on the basis of having a normotensive and non-proteinuric pregnancy with no medical or obstetric complications. The demographic and clinical features of the women with PE and the normal pregnant women are given in Table 1.

Placental tissue collection
Placental tissue samples (1 cm × 1 cm × 1 cm) were cut from the maternal side near to the umbilical cord in a sterile condition and were immediately flash-frozen using liquid nitrogen. The flash-frozen placental tissues were stored at −86°C until being analyzed by western blot.

Antibodies for western blot
Anti-endothelin-1 and anti-β-actin were purchased from Abcam. Anti-E-cadherin and anti-CD68 were obtained from Santa Cruz Biotechnology.

Western blot analysis
The flash-frozen placental tissues were ground to a fine powder in a chilled mortar in the presence of liquid nitrogen. Immediately after grinding, the placenta powder was lysed on ice in RIPA buffer (Sigma-Aldrich) supplemented with a cocktail of protease and phosphatase inhibitors (Thermo Scientific). The total cellular protein concentration was determined using a BCA protein assay kit according to the manufacturer's instructions (Pierce, Thermo Scientific). The total cellular proteins (20 µg) were separated by a 10% SDS-PAGE gel and the separated proteins from the SDS-PAGE gel were transferred onto a polyvinylidene difluoride membrane (Bio-Rad). Nonspecific binding was blocked by membrane incubation in PBS with 5% nonfat dried milk and 0.05% Tween-20 for 1 h at room temperature. The membranes were probed with primary antibodies for 2 h at room temperature. The total levels of E-cadherin, endothelin-1, and CD68 were determined using the respective antibodies. β-actin was used as a loading control. Appropriate HRP-conjugated secondary antibodies were used to visualize the specific bands. The protein bands were visualized using ECL (Bio-Rad) according to the manufacturer’s instructions. Images were taken using a ChemiDoc™ MP system (Bio-Rad).

RESULTS

In the present study, the expression levels of E-cadherin, endothelin-1, and CD68 were examined in preeclamptic placentas and normal placentas used as controls by western blot. PE patients were approximately matched for age, gestational age, and body mass index with normal pregnant women (Table 1). It was found that there was no detectable expression of E-cadherin or endothelin-1 in the control placentas (Figure 1, 2). However, the expression of E-cadherin and endothelin-1 was found to be dramatically increased in preeclamptic placentas in comparison to those derived from healthy women (Figure 1, 2). The results showed that whereas CD68 was expressed at low levels in normal placentas, the expression of CD68 was highly elevated in preeclamptic placentas (Figure 3). Taken together, the results showed that PE induces the expression of E-cadherin, endothelin-1, and CD68.

DISCUSSION

In this study, we reported that the expression of E-cadherin, endothelin-1, and CD68 is upregulated in preeclamptic placentas in comparison to control placentas.
Creases in vasoconstriction, hypertension, and other clinical manifestations of PE. Levels of endothelin-1 mRNA in trophoblasts were shown to be higher in PE patients than in healthy subjects, which suggests that endothelin-1 is associated with inadequate trophoblast invasion in PE (20). Furthermore, a study demonstrated that the plasma endothelin-1 level in patients with PE is correlated with the level of damage to the endothelium and the severity of the disease (21). It is conceivable that an increase in the expression of endothelin-1 is involved in the pathogenesis of PE and may be an important cause of hypertension, endothelial dysfunction, and impaired trophoblast invasion in PE.

The innate immune system is known to be over-activated in PE (22). During a healthy pregnancy, macrophages play a key role in the regulation of implantation, the apoptosis and invasion of trophoblasts, and remodeling of the spiral arteries (23, 24). In PE, the macrophage population is increased in the placenta and macrophage-induced apoptosis leads to defective trophoblast invasion and impaired remodeling of the uterine spiral arteries (25, 26). Our data showed that the expression of CD68 was highly elevated in preeclamptic placentas in comparison to normal placentas. An increased CD68 level indicates an increased number of macrophages. This finding supports the theory that the macrophage population may have a critical role in the pathophysiology of PE, and the immunomodulatory role of macrophages may alter trophoblast invasion and hinder remodeling of the spiral arteries associated with poor placentation.

CONCLUSION

We have demonstrated that the expression of E-cadherin, endothelin-1, and CD68 was increased in PE. Understanding the molecular factors involved in the pathophysiology of PE could help in the development of new approaches for the prediction and treatment of PE.

REFERENCES


11. Bussen S, Stütterlin, Steck T. Plasma endothelin and big endothelin levels in women with severe preeclampsia or HELLP-syndrome. Arch Gynecol Obstet 1999; 262(3-4): 113-9. [CrossRef]


13. Redman CW, Sargent IL. Pre-eclampsia, the placenta and the maternal systemic inflammatory response—a review. Placenta 2003; 24(Suppl A): 21-7. [CrossRef]
